
Aluminum

Nov 28, 2021

General Documentation

1 What is Aluminum? 1

2 Setup and General Knowledge 3
2.1 The listen.json file . 3

3 Features 5
3.1 Aluminum Wire . 5

Index 9

i

ii

CHAPTER 1

What is Aluminum?

Aluminum is a lightweight, simple-to-install, and easy-to-use web server written entirely in Node.js, “an asynchronous
event-driven JavaScript runtime . . . designed to build scalable network applications.” It includes not only a traditional
static/dynamic web server, but also various other features that simplify the web development process, such as authen-
tication and network-based cryptography platforms.

1

https://www.nodejs.org

Aluminum

2 Chapter 1. What is Aluminum?

CHAPTER 2

Setup and General Knowledge

Note: In this documentation, / refers to the root directory of the Aluminum repository, except as otherwise noted.

To install Aluminum, simply clone the git repository, install the dependencies automatically with npm, and copy the
default user files from the /defaults directory to /usr. Starting the server is as simple as typing npm start
into your terminal.

See also:

Please see the installation guide for more detailed instructions on installing Aluminum.

Aluminum is controlled by JSON configuration files. These files are found in the /usr/prefs directory.

2.1 The listen.json file

The listen.json file, located at /usr/prefs/listen.json determines which listening addresses Aluminum
uses for different features. The file contains a single listenAddresses object, described below.

A default configuration of listen.json is located at /defaults/prefs/listen.json.

listenAddresses

Object Properties

• wire (wirePorts) – Listening address for Aluminum Wire

wirePorts

Object Properties

• HTTP (String) – Port to use for Aluminum Wire over HTTP

• HTTPS (String) – Port to use for Aluminum Wire over HTTPS

3

Aluminum

Warning: Wire does not yet support HTTPS.

4 Chapter 2. Setup and General Knowledge

CHAPTER 3

Features

Aluminum offers several unique and useful features:

• Highly Customizable: Use an official extension, a community-contributed one, or make your own.

• Integrated Authentication Server: Verify end users’ identity without leaving the Aluminum platform.

• PHP support: If you’re uncomfortable using Node.js for server-side scripting, Aluminum is also compatible
with PHP.

• And more: Remote system resource monitor, network based time synchronization, math rendering, simplified
cryptography, etc.

3.1 Aluminum Wire

Aluminum Wire is a highly-customizable and extensible static file server that also includes support for
dynamic files (using both Node.js and PHP).

Note: Dynamic file support is not yet available

3.1.1 Configuration

The configuration file for Aluminum Wire is read from /usr/prefs/wire.json. The supported configuration
options are described below.

wireConfig

Object Properties

• protocol (String) – The protocol for Wire to use, either http or https

5

Aluminum

Note: protocol is not yet implemented.

• indexRedirect (Boolean) – Whether to respond to requests for a directory by serving
the index.html file in that directory (if it exists; otherwise, a 404 response code will be
served)

• errorPages (wireErrPgs) – Configuration options for the error pages served by Wire

wireErrPages

Object Properties

• notFound (errPageConf) – Describes the page that Wire should serve if a resource
cannot be found

• serverError (errPageConf) – Describes the page that Wire should serve in the event
of an internal server error

errPageConf

Object Properties

• URI (String) – The URI of the file to serve, given relative to /src/wire/main.js

• encoding (String) – The encoding of the file to serve. If the MIME type that corre-
sponds to URI is not text, this property will be ignored.

3.1.2 Serving Files

Wire serves files from /usr/resources/wire/serve/.

Client Cache Support

When Wire serves a static file, it retrieves the date that the file was last modified and sends this information in the
Last-Modified HTTP header.

Wire automatically reads the If-Modified-Since HTTP header from the request when serving static files. If
the requested resource exists and has not been modified since the time indicated by If-Modified-Since, a 304
Not Modified response code is served, indicating that the cached version of the file is up-to-date. Otherwise (or if
the request does not contain an If-Modified-Since header), the resource is served.

Error Handling

The following table shows the types of errors that Wire will handle when serving files:

Problematic
Function

Error
Code

HTTP Response
Code

Response Body

fs.readFile Any 404 The file at wireConfig.errorPages.
notFound.URI

fs.stat Any 500 The file at wireConfig.errorPages.
serverError.URI

6 Chapter 3. Features

Aluminum

Caution: Errors with reading the Wire configuration file (e.g., the file cannot be accessed at /usr/prefs/
wire.json, a required configuration option is missing) or error pages (e.g., the error page cannot be accessed)
will raise an exception and cause Wire to crash.

Error Page Variables

In error pages with MIME type text, information about the server and error may be included in the response sent.
Variables may be inserted anywhere within the file and are surrounded by the dollar ($) symbol.

Note: If two variables need to be inserted in an error page back-to-back, then each variable should have its own set
of $ symbols.

Note: Variables are case-sensitive.

The possible variables that may be used within an error page are described below. Each variable may be used zero,
one, or multiple times.

Vari-
able

Description

$requrl$The request URL
$adjrequrl$The request URL with “index.html” appended, if wireConfig.indexRedirect is set to true.

Otherwise, this is the same as $requrl$. This variable will only function in the event of an fs.
readFile error.

$osplatform$The operating system platform of the server. See os.platform().
$ostype$The operating system type of the server. See os.type().
$osversion$The operating system release of the server. See os.release().
$port$ The port on which the Wire server is listening.
$errcode$The code of the error. See error.code.
$errno$ The number of the error. See error.errno.
$errmessage$The error message. Note that this may contain information such as the absolute path to a resource on a

server. See error.message.

3.1. Aluminum Wire 7

https://nodejs.org/api/os.html#os_os_platform
https://nodejs.org/api/os.html#os_os_type
https://nodejs.org/api/os.html#os_os_version
https://nodejs.org/api/errors.html#errors_error_code
https://nodejs.org/api/errors.html#errors_error_errno
https://nodejs.org/api/errors.html#errors_error_message_1

Aluminum

8 Chapter 3. Features

Index

J
JSON Objects

errPageConf, 6
listenAddresses, 3
wireConfig, 5
wireErrPages, 6
wirePorts, 3

9

	What is Aluminum?
	Setup and General Knowledge
	The listen.json file

	Features
	Aluminum Wire

	Index

